equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/



Espaço de fases em mecânica quântica

Uma das características distintas da mecânica quântica é que o estado físico de um sistema não determina o resultado de qualquer medida que possa fazer-se sobre ele. Em termos mais simples, o resultado de uma medida sobre dois sistemas quânticos que tenham o mesmo estado físico nem sempre resulta nos mesmos resultados. Assim uma teoria como a mecânica quântica que trata de descrever a evolução temporal dos sistemas físicos só pode prever a probabilidade de que ao medir uma determinada grandeza física se obtenha determinado valor. Isto quer dizer que a mecânica quântica realmente é uma teoria que explica como varia a distribuição de probabilidade das possíveis medidas de um sistema (entre duas medições consecutivas, já que no instante da medida se produz um colapso da função de onda aleatório).

estado quântico de um sistema pelas razões anteriormente expostas não se parece em nada ao estado clássico de uma partícula ou um sistema de partículas. De fato o estado quântico de um sistema é representável mediante uma função de onda:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

A relação mais próxima entre espaço fásico e função de onda é que o quadrado do módulo da função de onda está relacionado com uma distribuição de probabilidade definida sobre o espaço fásico. Isto significa que, para construir o conjunto de estados quânticos ou espaço de Hilbert de certos sistemas quânticos, pode considerar-se inicialmente o espaço fásico que se usaria em sua descrição clássica e considerar o conjunto de funções de quadrado integrável sobre o espaço fásico, a este tipo de procedimento se conhece como quantização.





teorema de Liouville é um resultado da mecânica hamiltoniana sobre a evolução temporal de um sistema mecânico. Considera-se um conjunto de partículas com condições iniciais próximas que podem ser representadas no espaço de fases por uma região conexa, a qual, apesar de se expandir e contrair a medida que cada partícula evolua, manterá invariante seu volume.

Há também resultados matemáticos relacionados em topologia simplética e teoria ergódica.

Consideremos uma região do espaço fásico que evolua com o tempo ao deslocar-se sobre sua trajetória. Cada um de seus pontos transforma-se ao longo do tempo em uma região de localizada forma diferente, a qual se situa em outra parte do espaço fásico. O teorema de Liouville afirma que, apesar da translação e a alteração de forma, o "volume" total desta região permanecerá invariante. Além disso, devido à continuidade da evolução temporal, se a região for conexa inicialmente, seguirá sendo conexa todo o tempo.

Quase todas as demostrações usam o fato de que a evolução temporal de uma "nuvem" de pontos no espaço fásico é de fato uma transformação canônica que alterará a forma e posição de tal nuvem, ainda que mantenha seu volume total.

Demonstração direta

Uma forma de ver provada que a evolução temporal é uma transformação canônica, fato relativamente perceptível, e a partir daí calcular diretamente o determinante de tal alteração de coordenadas, é provar que de fato o determinante de tal transformação é igual a 1, o qual prova a invariância do volume.

Demonstração baseada na forma simplética

Outra forma de provar o teorema é ter em conta que a forma de volume  do espaço fásico é o n-ésimo produto da forma simplética, e que está de acordo com o teorema de Darboux, expressando-se como produto de pares de variáveis canonicamente conjugadas:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

De onde segue que o determinante da transformação é igual a 1 e, portanto:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Essa última expressão é essencialmente o enunciado do teorema de Liouville.

Equação de Liouville

O teorema de Liouville pode ser reescrito em termos do colchete de Poisson. Essa forma alternativa, conhecida como equação de Liouville, vem a ser dada por:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

ou em termos do operador de Liouville, também chamado "Liouvilliano":




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

que leva à forma:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Mecânica quântica

Em mecânica quântica existe um resultado análogo ao teorema de Liouville que descreve a evolução de um estado misto. De fato, pode-se chegar à versão mecânico-quântica deste resultado mediante a simples quantização canônica. Aplicando esse procedimento formal, chegamos ao análogo quântico do teorema de Liouville:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Onde ρ é a matriz densidade. Quando se aplica o resultado ao valor esperado de um observável, a correspondente equação dada pelo teorema de Ehrenfest toma a forma:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Onde  é um observável.




conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física.

Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade  de encontrá-lo num micro-estado particular  é dada por:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

sendo  a energia do microestado  e  a função de partição do sistema, definida por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico.

Apresentação física do problema

Imagine-se que se tem um sistema físico em contacto com um banho térmico. Isto quer dizer que está em contacto com uma grande massa a uma temperatura dada, e pelo princípio zero da termodinâmica tenderemos portanto o sistema em equilíbrio termodinâmico com o banho. Nestas condições, a energia não está totalmente determinada, senão que é uma variável aleatória que pode tomar uma série de valores. Desta forma, só podemos falar de probabilidade de que o sistema adopte uma energia determinada em função desta temperatura.

O fator de Boltzmann

Demonstra-se que a probabilidade de que um sistema a temperatura T esteja numa configuração de energia E é proporcional ao fator de Boltzmann:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde

 é a probabilidade buscada
 é a energia cuja probabilidade se está a procura
 é a constante de Boltzmann
 é a temperatura.

A constante  não é mais que uma constante de normalização imposta para que a soma das probabilidades de todos os estados seja um. Define-se trivialmente como:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é um índice mudo que recorre todos os estados possíveis do sistema com um número de partículas, volume e temperatura dadas.

A função de partição canónica

A constante de normalização  recebe o nome de função de partição canónica ou simplesmente de função partição. Esta é uma função matemática da temperatura, em número de partículas e o volume. Pode-se demonstrar a fórmula seguinte, que relaciona a mecânica estatística com a termodinâmica no conjunto canónico:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Esta equação nos dá a energia livre de Helmholtz do sistema (uma variável de estado termodinâmica) em função das suas variáveis naturais, o que supõe um conhecimento termodinâmico exaustivo do sistema. Portanto conhecer a função de partição é resolver o problema estatístico.





Em mecânica estatística, o Ensemble Grande CanônicoGrande Ensemble ou Ensemble Macrocanônico é um ensemble estatístico que modeliza um sistema termodinâmico em contato com um reservatório térmico e de partículas, com temperatura e potencial químico fixos.

Um dos interesse desse ensemble é sua capacidade de tratar sistemas com número de partículas variável, além do fato que a função de partição grande canônica é às vezes mais simples a calcular que a função de partição do ensemble canônico, como no caso dos gases quânticos de férmions e bósons.

Função de partição

Classicamente, a função de partição do ensemble grande canônico é dada pela soma ponderada da função de partição do ensemble canônico para um sistema de  partículas




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é a função de partição do ensemble canônico para um sistema de volume V à temperatura T com o número de partículas N fixo. O parâmetro  é definido abaixo e é chamado fugacidade (ou atividade) do sistema




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  corresponde ao potential químico.

A função de partição grande canônica ainda pode ser reescrita como uma soma sobre os microestados j do sistema, caracterizados pela energia  e pelo número de partículas 




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/,

onde .

Quantidades termodinâmicas

Se considerarmos  e  como variáveis independentes, o número médio de partículas e a energia interna média do sistema são dados por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Se considerarmos  e  como variáveis independentes, obtemos expressões equivalentes para o número de partículas




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Os potenciais termodinâmicos podem igualmente ser obtidos, sendo a conexão com a termodinâmica estabelecida pelo grande potencial  que nos fornece todas as quantidades de interesse no limite termodinâmico. A energia livre de Helmholtz possibilita o mesmo tipo de conexão quando o problema é tratado pelo ensemble canônico.




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


A pressão, por exemplo, também pode ser expressa em termos da função de partição grande canônica




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/


Estatística de bósons e férmions

A função de partição grande canônica de um sistema de bósons e férmions pode ser facilmente calculada a partir do conceito de número de ocupação, diferentemente da função de partição canônica que não se fatoriza devido as correlações introduzidas pelo princípio de exclusão de Pauli.

Denotamos  o número de partículas no auto-estado  de energia  para um micro-estado específico do sistema. Nesse caso, a função de partição de um sistema de férmions ou bósons independentes e idênticos se fatoriza




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

sendo essas somas calculáveis a partir do princípio de exclusão de Pauli, que impõe  para férmions e  natural para bósons, de forma que ela se escreve




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

em que  para bósons e  para férmions.





Grande Potencial é uma quantidade usada em física estatística para tratar especialmente processos irreversíveis em sistemas abertos.[1]

O grande potencial é definido por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é a energia a temperatura do sistema,  a entropia é o potencial químico, e  é o número de partículas do sistema.

A diferencial do grande potencial é dada por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é a pressão e  é o volume, usando a relação termodinâmica fundamental (combinados primeira e a segunda lei da termodinâmica);




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Quando o sistema está em equilíbrio termodinâmico,  é um mínimo. Isto pode ser visto, considerando que  é zero se o volume é fixo e a temperatura e potencial químico cessaram de evoluir.

Energia Livre de Landau

Alguns autores referem-se a energia livre de Landau ou potencial de Landau como:[2]




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

nomeado após o físico russo Lev Landau, que pode ser um sinônimo para o grande potencial, dependendo estipulações do sistema. Para sistemas homogêneos, obtém-se 

Grande potencial para sistemas homogêneos versos não homogêneos

No caso de um tipo de escala invariante de sistema (um sistema em que o volume de  tem exatamente o mesmo conjunto de microestados como  sistemas de volume de ), depois, quando se aumenta o sistema com novas partículas, a energia fluirá a partir do reservatório para preencher o novo volume com uma nova extensão homogénea do sistema original. A pressão, então, deve ser constante no que diz respeito às alterações no volume: , e as partículas e todas as quantidades aumentadas (número de partículas, de energia, de entropia, potenciais, ...) devem crescer linearmente com o volume, por exemplo, . Neste caso, temos simplesmente , bem como a relação familiarizadas  para a energia livre de Gibbs. O valor de  deve ser entendido como o trabalho que extrai do sistema, reduzindo-o a nada (colocar todas as partículas e energia de volta para o reservatório). O fato é que  é negativo, implica que leva energia a realizar esta extração. Tal escala homogénea não existe em muitos sistemas. Por exemplo, quando se analisa o conjunto de elétrons numa única molécula, ou mesmo um pedaço de metal flutuando no espaço, a duplicação do volume do espaço faz o dobro do número de elétrons no material.[3] O problema aqui é que, apesar de elétrons e energia são trocados com um reservatório, o material anfitrião não é permitido mudar. Geralmente em pequenos sistemas, ou sistemas com interações de longo alcance ( aqueles que estão fora do limite termodinâmico), .[4]

Gás Ideal

Ver artigo principal: Gás ideal

Para um gás ideal,




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é o grande função de partição é a constante de Boltzmann é a função de partição para uma partícula e  é o inverso da temperatura. O fator  é o fator de Boltzmann.





Em Mecânica estatística, um ensemble microcanônico é o conjunto estatístico que é usado para representar os possíveis estados de um sistema mecânico que tem uma energia total especificada. O sistema é assumido como isolado, no sentido que o sistema não pode trocar energia ou partículas com seu ambiente, assim o valor da energia total permanece fixo enquanto o tempo passa. A energia, volume, e composição do sistema são mantidas fixas em todos os estados possíveis do sistema.

As variáveis ​​macroscópicas do conjunto microcanônico são parâmetros físicos que influenciam a natureza dos estados internos do sistema, como o número total de partículas , o volume disponível , bem como a energia total . Em consequência, este conjunto é algumas vezes chamado de ensemble , pois cada um destes três parâmetros é uma constante no conjunto.

Em termos simples, o ensemble microcanônico é definido através da atribuição de uma probabilidade igual para cada microestado do sistema cuja energia cai dentro de um intervalo  e . Para todos os outros microestados se assume probabilidade igual a zero. Seja  a probabilidade de o sistema estar em um dado microestado  naquele intervalo de energia. O sistema deve estar em um dado microestado, logo




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

 .

Se o número total de microestados com igual probabilidade é , então




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

O intervalo de energia é, em seguida, reduzido em largura até que se torne infinitamente estreito, . No limite deste processo, obtém-se o conjunto microcanônico.

Na prática, o ensemble microcanônico não corresponde a uma situação experimentalmente realista. Para um sistema físico real, existe alguma incerteza na energia devido a fatores não controlados na preparação do sistema. Além da dificuldade de encontrar um análogo experimental, é difícil de realizar cálculos que satisfaçam exatamente o requisito de energia fixa. Sistemas em equilíbrio térmico com o ambiente têm incerteza na energia, e são melhor descritos usando o ensemble canônico ou o ensemble grande canônico.

Comentários

Postagens mais visitadas deste blog