conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física.

Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade  de encontrá-lo num micro-estado particular  é dada por:





equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

sendo  a energia do microestado  e  a função de partição do sistema, definida por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico.

Apresentação física do problema

Imagine-se que se tem um sistema físico em contacto com um banho térmico. Isto quer dizer que está em contacto com uma grande massa a uma temperatura dada, e pelo princípio zero da termodinâmica tenderemos portanto o sistema em equilíbrio termodinâmico com o banho. Nestas condições, a energia não está totalmente determinada, senão que é uma variável aleatória que pode tomar uma série de valores. Desta forma, só podemos falar de probabilidade de que o sistema adopte uma energia determinada em função desta temperatura.

O fator de Boltzmann

Demonstra-se que a probabilidade de que um sistema a temperatura T esteja numa configuração de energia E é proporcional ao fator de Boltzmann:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde

 é a probabilidade buscada
 é a energia cuja probabilidade se está a procura
 é a constante de Boltzmann
 é a temperatura.

A constante  não é mais que uma constante de normalização imposta para que a soma das probabilidades de todos os estados seja um. Define-se trivialmente como:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é um índice mudo que recorre todos os estados possíveis do sistema com um número de partículas, volume e temperatura dadas.

A função de partição canónica

A constante de normalização  recebe o nome de função de partição canónica ou simplesmente de função partição. Esta é uma função matemática da temperatura, em número de partículas e o volume. Pode-se demonstrar a fórmula seguinte, que relaciona a mecânica estatística com a termodinâmica no conjunto canónico:




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Esta equação nos dá a energia livre de Helmholtz do sistema (uma variável de estado termodinâmica) em função das suas variáveis naturais, o que supõe um conhecimento termodinâmico exaustivo do sistema. Portanto conhecer a função de partição é resolver o problema estatístico.





física estatística é o ramo da física que usa métodos da teoria das probabilidades e estatística e, particularmente, as ferramentas matemáticas para lidar com grandes populações e aproximações, na solução de problemas físicos. Pode descrever uma grande variedade de campos com uma natureza inerentemente estocástica. Suas aplicações incluem muitos problemas nos campos da física, biologiaquímicaneurologia e até mesmo em algumas ciências sociais, como a sociologia. Seu principal objetivo é esclarecer as propriedades da matéria sob conjuntos, em termos de leis físicas que regem o movimento atômico.[1]

Em particular, a mecânica estatística desenvolve os resultados fenomenológicos da termodinâmica a partir de uma análise probabilística dos sistemas de base microscópica. Historicamente, um dos primeiros tópicos da física onde foram aplicados métodos estatísticos foi o campo da mecânica, que se preocupa com o movimento de partículas ou objetos quando submetidos a uma força.

Mecânica estatística

Ver artigo principal: Mecânica estatística

mecânica estatística fornece um quadro que relaciona as propriedades microscópicas de átomos e moléculas com as propriedades macroscópicas ou extensivas de materiais que podem ser observados na vida cotidiana. Portanto, ela explica a termodinâmica como um resultado natural da estatística, mecânica clássica e mecânica quântica ao nível microscópico. Por causa desta história, a física estatística é muitas vezes considerada como sinônimo de mecânica estatística ou termodinâmica estatística.

Uma das equações mais importantes da mecânica estatística (análogo à F = ma em mecânica, ou a equação de Schrödinger na mecânica quântica) é a definição da função de partição Z, que é essencialmente uma soma ponderada de todos os possíveis estados q disponíveis para um sistema .




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

onde  é a constante de BoltzmannT é a temperatura e E(q) é a energia do estado q. Além disso, a probabilidade de um determinado estado q ocorrer é dada por




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

Aqui, vemos que os estados de energia muito alta têm pouca probabilidade de ocorrência, um resultado que é consistente com a intuição.

A abordagem estatística pode funcionar bem em sistemas clássicos quando o número de graus de liberdade (e assim o número de variáveis​​) é tão grande que a solução exata não é possível, ou não é realmente útil. A mecânica estatística também pode descrever o trabalho na dinâmica não-linearteoria do caosfísica térmicadinâmica dos fluidos (particularmente nos números de Knudsen elevados) e física de plasmas.

Embora alguns problemas em física estatística possam ser resolvidos analiticamente por meio de aproximações e expansões, as pesquisas mais atuais utilizam o poder de processamento de computadores modernos para simular ou aproximar soluções. Uma abordagem comum para problemas estatísticos é usar uma simulação de Monte Carlo para produzir uma ideia da dinâmica de um sistema complexo.





Em Mecânica estatística, um ensemble microcanônico é o conjunto estatístico que é usado para representar os possíveis estados de um sistema mecânico que tem uma energia total especificada. O sistema é assumido como isolado, no sentido que o sistema não pode trocar energia ou partículas com seu ambiente, assim o valor da energia total permanece fixo enquanto o tempo passa. A energia, volume, e composição do sistema são mantidas fixas em todos os estados possíveis do sistema.

As variáveis ​​macroscópicas do conjunto microcanônico são parâmetros físicos que influenciam a natureza dos estados internos do sistema, como o número total de partículas , o volume disponível , bem como a energia total . Em consequência, este conjunto é algumas vezes chamado de ensemble , pois cada um destes três parâmetros é uma constante no conjunto.

Em termos simples, o ensemble microcanônico é definido através da atribuição de uma probabilidade igual para cada microestado do sistema cuja energia cai dentro de um intervalo  e . Para todos os outros microestados se assume probabilidade igual a zero. Seja  a probabilidade de o sistema estar em um dado microestado  naquele intervalo de energia. O sistema deve estar em um dado microestado, logo




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

 .

Se o número total de microestados com igual probabilidade é , então




equação tensorial de sistema dinâmico estatístico quântico



1 /     /  / /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


/

O intervalo de energia é, em seguida, reduzido em largura até que se torne infinitamente estreito, . No limite deste processo, obtém-se o conjunto microcanônico.

Na prática, o ensemble microcanônico não corresponde a uma situação experimentalmente realista. Para um sistema físico real, existe alguma incerteza na energia devido a fatores não controlados na preparação do sistema. Além da dificuldade de encontrar um análogo experimental, é difícil de realizar cálculos que satisfaçam exatamente o requisito de energia fixa. Sistemas em equilíbrio térmico com o ambiente têm incerteza na energia, e são melhor descritos usando o ensemble canônico ou o ensemble grande canônico.

Comentários

Postagens mais visitadas deste blog